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Cover photo: “Conrad Holmboe”, Greenland, 1923.  In 1922, the precursor of Tromsø 

Geophysical Observatory, The Geophysical Institute, acquired a 96’ steamer to service field 

stations in the arctic. The boat became trapped in the ice on the eastern seaboard of Greenland 

in 1923 while unsuccessfully attempting to relieve the personnel there, and, irrevocably 

damaged by the ice, she limped to Iceland and was scrapped. 
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Foreword 

There are somewhere between 150 and 200 magnetic observatories in the world. In short, the 

aim of these observatories is to monitor Earth´s magnetic field both at short and long time 

scales locally, and to put the obtained data into a wider and global context through sharing 

with the larger community. Geomagnetic data is applied in many different fields, such as basic 

and applied research within Space Physics, Space Weather, Space Climate, Solid Earth 

physics, Zoology, and so on. The use of the data covers topics from development of large, 

global models to case studies of phenomena of very localized nature, via monitoring and 

forecasting to protect modern society from space weather hazards.  Since global coverage of 

magnetic observatories is desirable and crucial for these applications, the operation of 

magnetic observatories may be viewed as a solidary and common task shared among the 

world´s countries, and, thus, every nation has a moral duty to measure and monitor the 

magnetic field within its territory.  

Considering the rather sparse amount of magnetic observatories, and the fact that many 

institutions and countries have several each, there are even fewer people involved in the 

seldom discussed and often underestimated task of day to day treatment and calibration of 

geomagnetic data. This has led to a very limited availability of written material covering the 

topic. In many, perhaps most, cases the knowledge and procedure of transforming the raw 

voltages coming out of a magnetometer into a meaningful and absolute representation of 

Earth´s magnetic field at the observatory, has been inherited from one person to the next. This 

is certainly the case at Tromsø Geophysical Observatory.  

Truls Lynne Hansen developed through his career an in-depth knowledge and insight into the 

calibration of magnetometers. He led the transition from use of the classic variometers with 

optical registration to fluxgate magnetometers at the Auroral Observatory, and was, thus, 

among the pioneers who had to understand and create a new way of thinking following the use 

of new technology. When Truls retired in 2013, I was left in charge of the Norwegian 

magnetometer network. From him I received his software tools, several hand-written sheets of 

paper describing the mathematics behind the calibration of fluxgate magnetometers as 

performed in Tromsø¸ and a promise of writing everything up in a report. The tools and sheets 

he gave me have been crucial for me in order to secure and continue the provision of quality 

magnetometer data from Norway, and I am very grateful for the knowledge Truls was able to 

transfer to me.  

Around the same time as Truls retired, Anna Willer was in a similar situation as myself, taking 

over the management of the magnetometers operated by DTU Space in Greenland and 

Denmark. Together Truls and Anna have done what Truls promised, and in an excellent 

manner here presents a thorough treatment of the mathematics needed to make sense of 

magnetometer data. 

Truls and Anna are, furthermore, contributing to and strengthening the long-standing 

relationship between the geomagnetic communities in Norway and Denmark, through their 

friendship and common effort to complete this important work. I am infinitely grateful to them 

both.  

 
Tromsø, April 8th 2020 

Magnar Gullikstad Johnsen 
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Note on calibration of triaxial fluxgate 
magnetometers 

 

 

1. Introduction 

The triaxial fluxgate magnetometer has over the last decades become the standard instrument 

for continuous recording of Earth’s magnetic field vector at ground. This simple and reliable 

device now constitutes the core of most geomagnetic observatories and has made possible 

today´s numerous networks of magnetic stations for ionosphere and magnetosphere studies.  

The output of a triaxial magnetometer is three voltage values, one from each sensor, which 

must be converted to magnetic field values by some mathematical procedure. This procedure 

requires a set of parameters specifying sensor scale values and offsets as well as orientation 

in space. This note describes the conversion procedure applied to the magnetometer networks 

of Tromsø Geophysical Observatory (TGO) at University of Tromsø, Norway, and DTU Space 

at Technical University of Denmark; for details see https://tgo.uit.no and https://dtu.space.dk  

The triaxial fluxgate magnetometer plays the role as variometer at various types of stations: 

geomagnetic observatories, simple field installations for ionosphere studies or something in 

between. The requirements depend on type of installation, but the basic procedure for 

calibration and conversion of the sensor output to magnetic field components remains the 

same. So, although the emphasis in this disposition is on magnetic observatories, the 

principles are applicable to less sophisticated setups. 

Our concern is not the mechanical and electronic designs of fluxgate magnetometers, only the 

basic fact they constitute an assembly of three orthogonal sensors, each being sensitive to the 

field component along the sensor axis.  The magnetometer electronics with signal detection 

circuits and subsequent A/D-conversion are physically separated from the sensor elements, 

but they are in our context logically included in term ´sensor´.  

 

2. The single sensor 

We first consider a single sensor in Earth´s magnetic field and introduce the following 

notation: 

F – the strength of Earth’s magnetic field 

V – the vertical component of the field 

H – the horizontal component of the field 

https://tgo.uit.no/
https://dtu.space.dk/
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D – the magnetic declination (azimuth of Earth´s field) 

I – the inclination of the field 

ζS = I +
π

2
  – the zenith distance of the field direction 

𝐵𝑆 – the component of Earth´s field vector along the sensor S 

𝜁𝑆  – the zenith distance of the sensor direction  

𝜑𝑆 – the azimuth of the sensor direction 

∆𝑆 – the angle between the sensor and Earth´s field 

The field experienced by the sensor is 

Bs = F ∗ cos ∆𝑆         (2-1) 

Calculating cos ∆𝑆 by spherical trigonometry we get 

BS = F ∗ (− cos ζS ∗ sin I +  sin ζS ∗ cos I ∗ cos(D − φS))    (2-2) 

BS  generates an output signal US , and we assume a linear relation between them: 

BS = 𝑘𝑆 ∗ 𝑈𝑆 + 𝑆0         (2-3) 

The constant 𝑘𝑆 denotes the scale value of the sensor and the 𝑆0 an offset of the zero level. 

This offset is normally subject to manual adjustment in order to keep US within the measuring 

range of the AD-converter. It resembles the baseline in the classical photographically recording 

magnetometers. We will later adopt that designation in a modified sense. How to determine 

the baseline values is the main issue of this note. 

 

3. The triaxial sensor assembly 

We denote the three axes X, Y and Z
1
 and apply (2-2) and (2-3) to each of them: 

BX = F ∗ (− cos ζX ∗ sin I + sin ζX ∗ cos I ∗ cos(D − φX))    (3-1) 

BY = F ∗ ( − cos ζY ∗ sin I + sin ζY ∗ cos I ∗ cos(D − φY))    (3-2) 

BZ = F ∗ (− cos ζZ ∗ sin I + sin ζZ ∗ cos I ∗ cos(D − φZ))    (3-3) 

BX = kX ∗ UX + X0         (3-4) 

BY = kY ∗ UY + Y0         (3-5) 

BZ = kZ ∗ UZ + Z0         (3-6) 

                                                           

1 Not to be confused with the cartesian geographic co-ordinates X Y Z often used in geomagnetism. Our XYZ are 
merely names of the sensors.  
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We observe that four parameters are needed to describe the output of each sensor, two for 

the direction (azimuth and zenith distance) and two for the electronic part (scale factor and 

offset). Thus, in principle, 12 values are required to calculate the outputs of a tri-axes sensor 

assembly. The three axes assumed being orthogonal, i.e. angle between any two sensors 

being 90 degrees, the number of directional parameters is reduced from six to three and the 

total to six.  

The values of the scale factors are calculated from the specifications of the electronics 

components involved or measured in a laboratory setup. 

As Earth´s magnetic field is given in a topocentric geodetic reference frame, the orientation of 

the sensor assembly must be tied to that frame too. That implies using direction of gravity and 

true north when aligning the sensor assembly. The direction of gravity is readily at hand, but 

geographic north involves an astronomical or geodetical determination of the azimuth of a 

sensor. Luckily, as demonstrated in the two following sections, this non-trivial operation can 

be circumvented by indirectly using the magnetic field as directional reference and restrict the 

orientation of the sensor assembly to a narrow range of positions 

Finally, we carry out a complete absolute measurement of the field with a DI-theodolite and 

proton precession magnetometer and compute the three offsets by the mathematical model 

defined by equations 3-1 through 3-6. In our parlance this operation is the absolute calibration 

or simply the calibration. 

The calibration assures the output of the sensor assembly matches the absolute observation 

and – hopefully – also produces correct values generally. In case the sensor assembly is 

influenced by phenomena not accounted for by the model, the offsets inevitably are adjusted 

so that we still have a match between absolute observation and variometer output.  

 

4. The DHV-mount 

This is the traditional setup of the sensor assembly, probably used at an overwhelming majority 

of world´s magnetic stations, most of the TGO/DTU stations included. The setup procedure runs 

as follows: 

- the offset current in the Y-sensor is disconnected. 

- the plane spanned by the X and Y-sensors is made horizontal. The Z-sensor then 

becomes vertical. The Z-offset is adjusted so that UZ is near zero. 

- the sensor assembly is rotated around the vertical axis until the output 𝑈𝑌 is zero. The 

X-sensor now points to magnetic north with an azimuth D0 and the Y-sensor points to 

magnetic east. The X-offset is adjusted until UX is near zero. 

With this setup the Y-sensor closely tracks variations in D, the X-sensor follows H and the Z-sensor 

gives us V, hence the designation DHV- mount.  

The orientation of the sensors are now 
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ζX =
π

2
  φX = D0 

ζY =
π

2
  φY = D0 +

π

2
 

ζZ = π  φZ is undefined. Z is positive downwards. 

and the equations in section 3 take the form: 

BX = F ∗ cos I ∗ cos(D − D0) = H ∗ cos (D − D0)     (4-1) 

BY = F ∗ cosI ∗ sin(D − D0) = H ∗ sin(D − D0)      (4-2) 

BZ = F ∗ sin I = V         (4-3) 

BX = kX ∗ UX + X0         (4-4) 

BY = kY ∗ UY + 𝑌0         (4-5) 

BZ = kZ ∗ UZ + Z0         (4-6) 

In the relations above there are four unknown quantities, X0, 𝑌0, Z0, and D0, but only three 

equations, the system thus being underdetermined. It is common practice to solve this problem 

by defining 𝑌0 to be zero because the Y-sensor´s offset current is disconnected. 

In the following we will, for the sake of clarity, use superscript 
abs

 to mark quantities that are 

output of an absolute measurement, i.e. the measured components of the field and the 

corresponding outputs of the sensors.  

With 𝑌0 = 0 the equations (4-1) through (4-6) the output of a calibration is: 

𝑫𝟎 = 𝐃𝐚𝐛𝐬 − 𝐚𝐫𝐜𝐬𝐢𝐧 (
𝐤𝐘∗𝐔𝐘

𝐚𝐛𝐬

𝐇𝐚𝐛𝐬 ) ≈ 𝐃𝐚𝐛𝐬 −
𝐤𝐘∗𝐔𝐘

𝐚𝐛𝐬

𝐇𝐚𝐛𝐬      (4-7) 

𝑿𝟎 = 𝑯𝒂𝒃𝒔 ∗ 𝐜𝐨𝐬(𝑫𝒂𝒃𝒔 − 𝑫𝟎) − 𝐤𝐗 ∗ 𝐔𝐗
𝐚𝐛𝐬      (4-8) 

𝐙𝟎 = 𝐅𝐚𝐛𝐬 ∗ 𝐈𝐚𝐛𝐬−𝐤𝐙 ∗ 𝐔𝐙
𝐚𝐛𝐬 = 𝐕𝐚𝐛𝐬 − 𝐤𝐙 ∗ 𝐔𝐙

𝐚𝐛𝐬     (4-9) 

We will use the term baselines for the quantities X0, Z0 and D0. 

It is the angular baseline D0 that makes the DHV-mount viable. As the determination of Dabs is 

based on the astronomically determined azimuth of the observatory´s mire, the azimuth of the X-

sensor, and thereby 𝑫𝟎 is tied to true north. The Z-sensor being aligned with the direction of 

gravity, we know the orientation of the sensor assembly in the geodetic frame of reference, and 

have thus got around the need for an independent observation of the true azimuth of a sensor.  

However, we know that 𝑌0 is not zero. Even with the offset current shut off, a small offset 

intrinsic to the sensor of the order of 10 nT may remain in the type of sensors we are using 2. 

                                                           

2 According to Lars W. Pedersen at DTU Space and Bjørn Ove Husøy at TGO, the engineers building our 
magnetometers. We are using sensors from Pandect with antiparallel rod cores. 
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This is not negligibly; for instance,3 with H=17200 nT it corresponds to a shift of 2´ in D. 

Additionally, as pointed out in sections 7 and 8, pillar differences and sensor misalignments 

inevitably also contribute to the sensor offsets, presumably more than the intrinsic offset.  

A nonzero 𝑌0 will shift D0 away from magnetic north. The reading of UY. will not be zero when the 

Y-sensor is pointing magnetic east, and we therefore have to rotate the assembly a small angle 

Y0 H⁄  further so that the Y-sensor experiences a small contribution from H which cancels 𝑌0 and 

brings 𝑈𝑌 to zero. 

If we can´t simply skip 𝑌0, we are left with an underdetermined system of equations. 

Fortunately, there is a loophole available. The equations for the Y-sensor (4-2 and 4-5) give 

us 

kY ∗ 𝑈𝑌 + 𝑌0 = H ∗ sin(𝐷 − 𝐷0)       (4-10) 

In geomagnetic observations the angle (𝐷 − 𝐷0) only rarely exceeds a few degrees., so we 

make a third order expansion of the sine function: 

kY ∗ UY + Y0 ≈ H ∗ (D − D0 −
(D−D0)3

6
)      (4-11) 

The third order term will amount to tiny 0.2” if |D − D0| = 1, grows to 5” at 3and 23” at 5. 

This means ignoring the third order term will cause an error of less than half an arcminute in 

even the most extreme excursions in declination. That is certainly good enough in any scientific 

application of D-recordings. 

As for absolute calibration we note that the accuracy of an absolute measurement of D is 

around 10” and that hardly any calibration is carried out when |D − D0| is larger than 3. Thus, 

the third order term causes not problem, and we can use the following expression for D-

calibration: 

D0 +
Y0

Habs = Dabs −
kY∗UY

abs

Habs         (4-12) 

Neither of the two terms on the left-hand side can be determined separately. We are able to 

find the sum only and 𝐷0 and 𝑌0 𝐻⁄  coalesce into one computable quantity. Thereby the 

problem of underdetermination vanishes for all variations in declination relevant to 

geomagnetism. However, as demonstrated later, this that not mean that the value of 𝑌0 is 

irrelevant. 

Equation (4-12) implies that an absolute calibration does not give us 𝐷0 but a modified version 

which we will denote effective 𝐷0: 

D0
∗ = D0 +

Y0

Habs         (4-13) 

and the calibrating equation for declination becomes 

                                                           

3 The magnetic field component values in our numerical examples are typical for the Brorfelde geomagnetic 

observatory: D = 3.5, H = 17200 nT, V = 47200 nT, I = 70.0, F = 50200 nT  
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𝐃𝟎
∗ = 𝐃𝐚𝐛𝐬 −

𝐤𝐘∗𝐔𝐘
𝐚𝐛𝐬

𝐇𝐚𝐛𝐬          (4-14) 

Physically the X-sensor azimuth is D0, but mathematically we have to use the virtual azimuth 

𝐷0
∗ to compensate for the shift of 𝐷0 during the setup procedure; D0

∗  is the azimuth the X-sensor 

would have got if Y0 was zero. 

The baseline X0 is also affected by the non-zero Y0. Replacing D0 in equation (4-1) with D0
∗  we 

obtain the effective baseline for the X-axis 

𝑋0
∗ = 𝐻𝑎𝑏𝑠 ∗ 𝑐𝑜𝑠(𝐷𝑎𝑏𝑠 − 𝐷0

∗) − 𝑘𝑋 ∗ 𝑈𝑋
𝑎𝑏𝑠       (4-15) 

The Z-sensor is not affected by 𝑌0 ≠ 0. Summed up, the calibration equations for the non-zero 

𝑌0 case are 

𝑫𝟎
∗ = 𝐃𝐚𝐛𝐬 −

𝐤𝐘∗𝐔𝐘
𝐚𝐛𝐬

𝐇𝐚𝐛𝐬          (4-16) 

𝐗𝟎
∗ = 𝐇𝐚𝐛𝐬 ∗ 𝐜𝐨𝐬(𝐃𝐚𝐛𝐬 − 𝐃𝟎

∗ ) − 𝐤𝐗 ∗ 𝐔𝐗
𝐚𝐛𝐬      (4-17) 

𝒁𝟎
∗ = 𝒁𝟎 = 𝐅𝐚𝐛𝐬 ∗ 𝐈𝐚𝐛𝐬−𝐤𝐙 ∗ 𝐔𝐙

𝐚𝐛𝐬 = 𝐕𝐚𝐛𝐬 − 𝐤𝐙 ∗ 𝐔𝐙
𝐚𝐛𝐬    (4-18) 

From a mathematical point of view little has changed here compared to the 𝑌0 = 0 case. In 

practice we can indeed forget about the effective baselines and use equations (4-7), (4-8), and 

(4-9) without any concern over 𝑌0. The effective baselines merely serve as a reminder of why 

the arcsine has vanished from equation (4-7), and that 𝑌0 after all is not zero. 

We have only vague ideas of the magnitude of 𝑌0 There are contributions from the intrinsic 

sensor offset, pillar difference (section 8), and sensor misalignment (section 9). Daring to make 

an educated guess, we would say somewhere between 20 and 200 nT, in a well-designed 

geomagnetic observatory closer to the lower limit rather than the upper.  

Tacitly, we have from the very beginning assumed 𝑌0 𝐻𝑎𝑏𝑠 ⁄ be to a small term, in fact it is 

required. Equation (4-12) is valid under the condition that 

|𝐷 − 𝐷0| < Λ          (4-19) 

where Λ is at most a few degrees. Introducing 𝐷0
∗ we have 

|𝐷 − 𝐷0
∗ +

𝑌0

𝐻𝑎𝑏𝑠| < Λ         (4-20) 

and taking the positive values of (𝐷 − 𝐷0), we get 

𝐷 − 𝐷0
∗ < Λ −

𝑌0

𝐻𝑎𝑏𝑠         (4-21) 

Now, 𝐷 − 𝐷0
∗ =

𝑘𝑌∗𝑈𝑌

𝐻
 being the variation in declination we are recording, this means a nonzero 

𝑌0 is restricting the range available for linear recording. In a worst case 𝑌0 may in fact reduce 

the positive side of the range to nil. A similar effect is seen for negative (𝐷 − 𝐷0). 

Clearly the value of 𝑌0 𝐻𝑎𝑏𝑠 ⁄ must be a fraction only of  to allow for reasonable variations in 

the declination. Taking =3, a value like 0.5 might be a reasonable upper limit for 𝑌0 𝐻𝑎𝑏𝑠⁄ . 

That implies 𝑌0 should be less than 150 nT when H=17200 nT. So, 𝑌0 probably does not 
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represent a problem at well-designed observatories outside the polar region. At high latitude 

observatories however distortions in the output may occur; at the Qaanaaq observatory with 

H=4000 nT, the critical value of 𝑌0 will be as low as 35 nT. 

The value of 𝐷0 was fixed in the setup of the sensor assembly, but D are subject to a secular 

variation. The value of (𝐷 − 𝐷0) can thus become unacceptably large over time, making an 

adjustment of 𝐷0 necessary. The value of 𝑌0 𝐻𝑎𝑏𝑠⁄  will keep almost constant, only slightly 

adjusted each time a new calibration is carried out. 

Now, finally, with the baselines at hand, the output of the DHV-mount can be computed 

𝐃 = 𝑫𝟎
∗ +

𝐤𝐘∗𝑼𝒀

𝑯
         (4-22) 

𝐇 =
𝑿𝟎

∗ +𝒌𝑿∗𝑼𝑿

𝐜𝐨𝐬(𝐃−𝑫𝟎
∗ )

         (4-23) 

𝐕 = 𝐁𝐙 = 𝐤𝐙 ∗ 𝐔𝐙 + 𝒁𝟎
∗

        (4-24) 

Be aware that, in principle, the formula 

H = √BX
2 + BY

2         (4-25) 

and the corresponding one for F are forbidden unless Y0 is known. 

 

5. An alternative: DIF-mount 

We start out with a DHV-mount where not only the offset current in the Y-sensor, but also in 

the X-sensor is disabled. The sensor assembly is rotated around the Y-sensor axis until BX is 

close to zero. The Z-sensor is then almost parallel to Earth´s  magnetic field, the output 

representing the total field. The X-sensor, now nearly perpendicular to the field, will be a 

measure of the inclination. The Y-sensor provides the declination as for the DHV-mount. This 

DIF arrangement is used at several TGO stations, including the Tromsø observatory.  

This means we have 

ζX = I0   φX = D0 

𝜁𝑌 =
𝜋

2
   𝜑𝑌 = 𝐷0 +

𝜋

2
 

𝜁𝑍 = 𝐼0 +  
𝜋

2
   𝜑𝑍 = 𝐷0  

The angle 𝐼0 has replaced 𝑋0 as baseline and will take values close to the field´s inclination at 

the site. Gravity is still used to make the Y-sensor horizontal, but we have renounced aligning 

the Z-sensor with direction of gravity, and are instead indirectly via the field inclination, using 

the plumb line in the DI-theodolite as vertical reference. The price paid for this is leaving X0 

undetermined. The advantage is a sensor mount with a close to one to one correspondence 

between the sensor output and the magnetic element observed with the DI-flux and proton 

magnetometer. With a continuously running a proton magnetometer we have a good running 
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check of the Z-sensor, and we can if needed make use of absolute measurements of D or I 

alone. In particular at field operations under difficult conditions this might be useful. 

The sensor output now take the form 

BX = −F ∗ sin I ∗ cos I0 + F ∗ cos I ∗ sin I0 ∗ cos(D − D0)    (5-1) 

BY = F ∗ cos I ∗ sin(D − D0)        (5-2) 

BZ = F ∗ sinI0 ∗ sinI + F ∗ cosI0 ∗ cos I ∗ cos(D − D0)    (5-3) 

BX = kX ∗ UX + 𝑋0         (5-4) 

BY = kY ∗ UY + 𝑌0         (5-5) 

BZ = kZ ∗ UZ + Z0         (5-6) 

In order for this to be a determined system of equation we need to get rid of 𝑋0 as well as 𝑌0. 

The calibration of the Y-sensor runs is exactly like the DHV case: 

𝐃𝟎
∗ ≈ 𝐃𝐚𝐛𝐬 −

𝐤𝐘∗𝐔𝐘
𝐚𝐛𝐬

𝐇𝐚𝐛𝐬          (5-8) 

𝐷0
∗ replaces 𝐷0 in equations (5-1), (5-2), and (5-3) in order to account for the effect of 𝑌0 not 

being zero. 

I0 is found from equation (5-1). With a second order approximation of cos(D − 𝐷0
∗) we have 

BX
abs

Fabs ≈ sin(I0 − Iabs) −
1

2
(

Dabs−𝐷0
∗

2
)

2

∗ sin (I0 + Iabs)     (5-8) 

Iabs being close to I0 we expand the sine: 

sin(I0 − Iabs) ≈ (I0 − Iabs) −
(I0−Iabs)

3

6
      (4-9) 

Accepting an error of 1.5” we can skip the last term if (I0 − Iabs) < 2°. That restriction will 

suffice for most practical cases. Then taking I0 + Iabs ≈ 2 ∗ Iabs the calibrating equation 

becomes 

𝐈𝟎
∗ = 𝐈𝐚𝐛𝐬 +

𝐤𝐱∗𝐔𝐗
𝐚𝐛𝐬

𝐅𝐚𝐛𝐬 +
𝟏

𝟖
(𝐃𝐚𝐛𝐬 − 𝑫𝟎

∗ )
𝟐

∗ 𝐬𝐢𝐧(𝟐 ∗ 𝐈𝐚𝐛𝐬)     (5-10) 

where the effective baseline 𝐼0
∗ encompasses a contribution from the unspecified 𝑋0 . 

I0
∗ = I0 +

X0

Fabs          (5-11) 

The last term in (5-10) will be small, but far from negligible, with Dabs − D0 = 3° and I = 70° it 

amounts to 45”. 

The value of X0 presumably is of the same size of order as Y0 and restricting the linear range 

for inclination. However, the effect is of less concern that for declination since Fabs never 

takes low values. 
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With I0
∗ replacing I0, 𝑍0

∗ is derived from (5-3) 

𝒁𝟎
∗ = 𝐅𝐚𝐛𝐬 ∗ 𝐬𝐢𝐧𝐈𝟎

∗ ∗ 𝐬𝐢𝐧𝐈𝐚𝐛𝐬 + 𝐅𝐚𝐛𝐬 ∗ 𝐜𝐨𝐬𝐈𝟎
∗ ∗ 𝐜𝐨𝐬 𝐈𝐚𝐛𝐬 ∗ 𝐬𝐢𝐧(𝐃𝐚𝐛𝐬 − 𝐃𝟎

∗ ) − 𝐤𝐙 ∗ 𝐔𝐙
𝐚𝐛𝐬 (5-12) 

Now the output from the varometer can be computed as follows 

𝐃 = 𝐃𝟎
∗ +

𝐤𝐘∗𝐔𝐘

𝐇
         (5-13) 

𝐈 = 𝐈𝟎
∗ −

𝐤𝐱∗𝐔𝐗

𝐅
−

𝟏

𝟖
(𝐃 − 𝐃𝟎

∗ )𝟐 ∗ 𝐬𝐢𝐧 𝟐𝐈𝟎
∗      (5-14) 

𝐅 =
𝐤𝐙∗𝐔𝐙+𝒁𝟎

∗

𝐬𝐢𝐧𝑰𝟎
∗ ∗𝐬𝐢𝐧𝐈+𝐜𝐨𝐬𝑰𝟎

∗ ∗𝐜𝐨𝐬 𝐈 ∗𝐬𝐢𝐧(𝐃−𝑫𝟎
∗ )

       (5-15) 

Strictly, the equations for D, I and F are coupled and should be solved simultaneously. 

However, a good estimate of H will solve the problem. 

Not knowing 𝑌0 and 𝑋0 the formula 

𝐅 = √𝐁𝐗
𝟐 + 𝐁𝐘

𝟐 + 𝐁𝐙
𝟐        (5-16) 

and the corresponding one for H are in principle forbidden. 

 

6. The effect of scale value inaccuracy 

We use the horizontal component from DHV-variometer to illustrate the effects of an inaccurate 

scale value. Other components and DIF mount give similar results. To this end a simplified 

version of (4-22) is sufficient: 

H = kX ∗ Ux + X0         (6-1) 

Here X0is the result of an absolute observation 

X0 = Habs − kX ∗ UX
abs        (6-2) 

so that 

H = kX ∗ (UX − UX
abs) + Habs       (6-3) 

A small error δkx in kX and δHabs in Habs give rise to an error in H  

δH = δkX ∗ (UX − UX
abs) − δHabs       (6-4) 

Introducing the relative error of the scale value we get the convenient form 

δH =
δkX

kX
∗ (H − Habs) − δHabs       (6-5) 

This expression first reflects the trivial, albeit important, fact that the value of δkX kX⁄  has little 

effect on readings of H which are in the vicinity of Habs, 𝛿𝐻𝑎𝑏𝑠 then being the important term. 



 

 
10 

Let´s take δHabs around 0.5 nT and δkX kx⁄  equal to 1% as typical values. With these numbers, 

a reading of H with (H − Habs) = 50 nT have an error of 1 nT, equally contributed by the two 

sources. Higher values of (H − Habs) will soon make the scale factor error dominant. 

Presumably most values of Habs are within a hundred nT from the quiet value of the field, at 

least outside the polar region. Thus improving δkX kX⁄  somewhat beyond 1% seems 

worthwhile. 

When computing mean values comprising a many absolute observations – like annual means 

– the average (𝐻 − 𝐻𝑎𝑏𝑠) is expected to be quite small since negative and positive value at 

least partially will cancel out. Large field excursion of several hundred nT are so rare that they 

do not affect the error in the mean value. To this end the accuracy of the scale value is not 

important, the crucial term is the uncertainly in the absolute observations. 

In ionosphere applications we often are deal with large excursions in the field. However, even 

with (𝐻 − 𝐻𝑎𝑏𝑠) = 500 nT 𝛿𝐻 will amount to only 5 nT. In an ionosphere physics context that 

is no serious problem, and δkX kX⁄  around 1% is satisfactory. 

 

7 Effect of pillar differences  

In sections 3 to 5 we implicitly assume the calibration measurements are done at the same 

place as the variometer. That is never possible; the sensor assembly is always sitting at a pillar 

at some distance from the theodolite pillar, and thus is not seeing the same field. Nevertheless, 

not knowing the difference we have no choice but to hope for the best and proceed using the 

formulae in section 4 or 5 for calculations of the baselines. 

A pillar difference shifts the output of the sensors. Let ∆𝑆 be the component of the vector 

difference between the two pillars along the sensor S. Equation (2-3) then takes the modified 

form 

BS = kS ∗ US + S0 + ∆S        (7-1) 

where 𝐵𝑆 now is the output of the sensor be it at the absolute pillar. When calibrating we find 

the sum S0 + ∆S only and therefore keep the notation S0 for the sum as well; we say that ∆S is 

incorporated in S0. The alternative, mathematically correct procedure, would be introducing a 

specific name for S0 without pillar difference and yet another for S0 including pillar difference. 

As we will encounter similar ´incorporations´ several times, that will only lead to a plethora of 

unimportant variables. The 𝑆0 emerging from the calibration process incorporates all effects 

equivalent to a field along the sensor which are not a part of the calibrating field. In this 

perspective equation (7-1) merely informs us that ∆S is part of S0. 

For a DHV-mount the incorporation of ∆S is of no concern for the X- and Z-sensor. For the Y-

sensor, however, ∆𝑌 will contribute to 𝑌0 with the potential danger of making it too large. For a 

DIF-mount there is a similar problem for 𝑋0 as well. Magnetic station in areas with large local 

anomalies could be affected by this. 
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8. Effects of sensor misalignments.  

The sensors are rarely pointing exactly as presumed in our model: there may be small 

deviations from orthogonality, and the assembly may not be perfectly oriented. Below we will 

make first order approximations to the effect of such deviations. We use the following 

notation to describe them: 

𝜇𝑆 – a small deviation in zenith distance from the correct angle for sensor S 

𝜈𝑆- a small deviation in azimuth from the correct angle for sensor S 

The magnetic field values in our numerical examples are taken from the Brorfelde 

observatory, see footnote 3. 

We first apply this to the Y-sensor in a DHV-mount. Equation (3-2) then takes the form 

BY = −V ∗ cos (
π

2
+ μY) + H ∗ sin (

π

2
+ μY) ∗ cos (D − D0 −

π

2
− νY)   (8-1) 

which in a first order approximation reduces to 

𝐵𝑌 ≈ 𝐻 ∗ (𝐷 − 𝐷0 − νY) + 𝑉 ∗ μY       (8-2) 

The angle νY is per definition zero as azimuth of the Y-axis is found by an absolute 

measurement of declination. There is no such convenient way to get rid of μY. The term V∗ μY 

tells us the obvious fact that the output of the Y-sensor is contaminated by the vertical 

component when μY ≠ 0.  

As BY = kY ∗ UY + 𝑌0 we have 

Y0 − μ𝑌 ∗ V = H ∗ (D − D0) − k𝑌 ∗ UY      (8-3) 

In a calibration the term μ𝑌 ∗ V thus behaves like part of 𝑌0. Estimating μY to be 0.1° we get 𝑉 ∗

μY = 82 𝑛𝑇 when V=47200 nT. Recalling the discussion following equation (4-21), 82 nT alone 

does not cause any non-linear output, but when combined with other contributions to Y0 it may 

do so. Efforts to bring μY below 0.1 when adjusting to horizontality at the setup therefore is 

advisable.  

In a calibration to find the declination baseline equation (8-2) is rewritten to 

D0
∗ = D0 +

Y0

Habs − μY ∗ tgIabs = Dabs −
kY∗UY

abs

Habs      (8-4) 

which means μY ∗ tg𝐼𝑎𝑏𝑠 is incorporated in 𝐷0
∗. 

Provided the absolute measurements are carried out at reasonably quiet magnetic conditions, 

the average of the contamination field is concealed in baseline 𝐷0
∗ and do not affect the 

recording of D. However, small variations in μY ∗ tg𝐼𝑎𝑏𝑠 from one absolute observation to the 

next will manifest as a noise in the series of baselines; with μY = 0.1° and I=70  a disturbance 

of 10´ in the inclination will be seen as a 11” shift in 𝐷0
∗ 

The same exercise on the equation for the X-sensor in a DHV-mount yields 

BX = −V ∗ cos (
π

2
+ μX) + H ∗ sin (

π

2
+ μX) ∗ cos(D − D0 + νX)   (8-5) 
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The last term vanishes in a first order approximation giving us 

BX ≈ H + μX ∗ V         (8-6) 

We observe the trivial fact that the output from the X-sensor is contaminated by the vertical 

component when not perpendicular to it. Applying V=47200 nT and μX =0.1° we get μX ∗ V = 

82 nT, as for the Y-sensor. 

The equation for calibration (in the first order version) is now 

X0
∗ − μX ∗ Vabs = Habs −kX ∗ UX

abs       (8-7) 

which demonstrates that μX ∗ 𝑉𝑎𝑏𝑠is incorporated into 𝑋0
∗ without complications. 

As for the Y-sensor Vabs will not the same in all calibrations giving rise to small variations in 

the baseline 𝑋0
∗. However, even a very large excursion like 500 nT will cause a shift of merely 

1 nT. 

Finally, the Z-sensor: 

BZ = −V ∗ cos(π + μZ) + H ∗ sin(π + μZ) ∗ cos(D − φZ + νZ)   (8-8) 

The factor 𝒄𝒐𝒔(𝑫 − 𝝋𝒁 + 𝝂𝒁)  can assume any value from -1 to 1 depending on how the sensor 

is tilted, effectively it is unpredictable. Take the worst case of 1 first order version of (8-8) 

becomes 

BZ = V − H ∗ μZ         (8-9) 

As anticipated 𝐵𝑍 is affected by H if the sensor is not precisely vertical. With H=17200 nT 

and μZ = 0.1° the effect is 39 nT. 

The approximated calibration equation is 

Z0 + Habs ∗ μZ = Vabs − kZ ∗ UZ
abs       (8-10) 

illustrating that 𝐻𝑎𝑏𝑠 ∗ μZ becomes part of the baseline, and, similar to for the two other axes, 

that here will be slight shifts in the baseline due to variations in 𝐻𝑎𝑏𝑠. 

In a DIF-mount the Y-sensor the behaves exactly as in the DHV-mount. 

For the X-axis in a DIF-mount equation (3-1) takes the form 

BX

F
= − sin I ∗ cos(I0 + μX) + cos I ∗ sin(I0 + μX) ∗ cos(D − D0 − νX)  (8-11) 

Because I0 is determined through an absolute observation, μX is zero. The azimuth error then 

vanishing in a first order approximation, there are no appreciable contamination or baseline 

“noise” in the output of this sensor. 

At last, the Z-sensor in the DIF-mount: equation (5-3) with the directional errors is 

BZ = F ∗ sin(𝐼0 + 𝜇𝑍) ∗ sinI + F ∗ cos(𝐼0 + 𝜇𝑍) ∗ cos I ∗ cos(D − D0 − 𝜈𝑍)  (8-12) 
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In usual first order approximation it turns into 

BZ ≈ F ∗ cos(𝐼 − 𝐼0) + 𝐹 ∗ 𝜇𝑍 ∗ (𝐼 − 𝐼0)      (8-13) 

which means that the sensor is seeing a contamination from the inclination. It is normally 

quite small: with F=50200, 𝜇𝑍 = 0.1°, and (𝐼 − 𝐼0) = 10´ it amounts to only 0.25 nT. 

The corresponding calibration equation is 

Z0 − Fabs ∗ μZ ∗ (Iabs − I0) = Fabs ∗ cos(Iabs − I0) − kZ ∗ UZ
abs   (8-14) 

where the tiny quantity Fabs ∗ μZ ∗ (𝐼 − 𝐼0) is incorporated in Z0. Variations in the inclination 

from one calibration to another will hardly cause any baseline noise. 

Generally, we observe that the gross effects of small misalignments of the order of 0.1 are 

absorbed by the baselines. Minor shifts in the baselines may however occur due to the field 

not being the same from one calibration to the next. Special attention should be given to 𝑌0 in 

order to avoid nonlinearities. 

9. Postscript 

As far as we can see the DHV and DIF mounts are the only possible ways to set up a triaxial 

sensor without an independent geodetic observation of the direction of one of the sensors. 

Within the limitations described these mounts serve geomagnetic excellently. Nevertheless, 

while grappling with this text, and Y0 in particular, we wished we had a sensor assembly with 

independently observed geodetic orientation, all three axes with identical mathematics to find 

simple offsets.  
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